哪些大模型可以实现智能语音播报

哪些大模型可以实现智能语音播报

OpenAI的Whisper:

Whisper是一个自动语音识别(ASR)系统,能够将语音转换为文本。结合文本到语音(TTS)系统,可以实现智能语音播报。

代码示例:import whisper

model = whisper.load_model("base")

result = model.transcribe("audio.mp3")

print(result["text"])

Google的WaveNet:

WaveNet是Google DeepMind开发的深度神经网络模型,用于生成高质量的语音。它可以与语音识别系统结合,实现智能语音播报。

代码示例(使用Google Cloud Text-to-Speech API):from google.cloud import texttospeech

client = texttospeech.TextToSpeechClient()

synthesis_input = texttospeech.SynthesisInput(text="Hello, world!")

voice = texttospeech.VoiceSelectionParams(language_code="en-US", ssml_gender=texttospeech.SsmlVoiceGender.NEUTRAL)

audio_config = texttospeech.AudioConfig(audio_encoding=texttospeech.AudioEncoding.MP3)

response = client.synthesize_speech(input=synthesis_input, voice=voice, audio_config=audio_config)

with open("output.mp3", "wb") as out:

out.write(response.audio_content)

Microsoft的Azure Cognitive Services:

Azure Cognitive Services提供了语音识别和语音合成的API,可以轻松实现智能语音播报。

代码示例:import azure.cognitiveservices.speech as speechsdk

speech_key, service_region = "YourSubscriptionKey", "YourServiceRegion"

speech_config = speechsdk.SpeechConfig(subscription=speech_key, region=service_region)

speech_synthesizer = speechsdk.SpeechSynthesizer(speech_config=speech_config)

speech_synthesizer.speak_text_async("Hello, world!").get()

Amazon Polly:

Amazon Polly是一项将文本转换为逼真语音的服务,支持多种语言和声音。

代码示例:import boto3

polly = boto3.client('polly')

response = polly.synthesize_speech(Text='Hello, world!', OutputFormat='mp3', VoiceId='Joanna')

with open('output.mp3', 'wb') as file:

file.write(response['AudioStream'].read())

相关文章

qq 空间怎么免费设置背景音乐,而且不花q币,也不充绿钻贵族?
厄齐尔世界杯经典一幕 吐出的口香糖颠完接着吃(视频)
缅怀忠烈:川军抗日最惨烈 伤亡64万多人